By generating control policies that create natural search behaviors in autonomous systems, ergodic control provides a principled solution to address tasks that require exploration. A large class of ergodic control algorithms relies on spectral analysis, which suffers from the curse of dimensionality, both in storage and computation. This drawback has prohibited the application of ergodic control in robot manipulation since it often requires exploration in state space with more than 2 dimensions. Indeed, the original ergodic control formulation will typically not allow exploratory behaviors to be generated for a complete 6D end-effector pose. In this paper, we propose a solution for ergodic exploration based on the spectral analysis in multidimensional spaces using low-rank tensor approximation techniques. We rely on tensor train decomposition, a recent approach from multilinear algebra for low-rank approximation and efficient computation of multidimensional arrays. The proposed solution is efficient both computationally and storage-wise, hence making it suitable for its online implementation in robotic systems. The approach is applied to a peg-in-hole insertion task using a 7-axis Franka Emika Panda robot, where ergodic exploration allows the task to be achieved without requiring the use of force/torque sensors.
翻译:通过在自主系统中产生自然搜索行为的控制政策,egodic控制提供了解决需要探索的任务的有原则的解决办法。一大批的egodic控制算法依赖于光谱分析,这种分析在储存和计算中都受到维度诅咒的影响。这种缺陷禁止在机器人操纵中应用自旋控制,因为机器人操纵往往需要在州空间进行2个以上层面的探索。事实上,最初的ergodic控制配方通常不允许为完整的 6D 终端效应成形而产生探索行为。在本文中,我们提出了一个基于利用低级高压近效技术在多维空间进行光谱分析的疯狂探索的解决方案。我们依赖高压列脱形法,这是最近从多线性代数中为低级近似和高效计算多维阵列而采用的一种方法。提议的解决方案在计算和存储方面都是高效的,因此适合在机器人系统中进行在线实施。该方法适用于使用7轴的Franka Emike Panda传感器在多层插入任务。