This paper investigates the use of game theoretic representations to represent and learn how to play interactive games such as Connect Four. We combine aspects of learning by demonstration, active learning, and game theory allowing a robot to leverage its developing representation of the game to conduct question/answer sessions with a person, thus filling in gaps in its knowledge. The paper demonstrates a method for teaching a robot the win conditions of the game Connect Four and its variants using a single demonstration and a few trial examples with a question and answer session led by the robot. Our results show that the robot can learn arbitrary win conditions for the game with little prior knowledge of the win conditions and then play the game with a human utilizing the learned win conditions. Our experiments also show that some questions are more important for learning the game's win conditions. We believe that this method could be broadly applied to a variety of interactive learning scenarios.


翻译:本文考察了游戏理论表达方式的使用, 以展示和学习如何玩游戏, 比如“ 连接四” 。 我们综合了通过演示、 积极学习和游戏理论学习的方方面面, 使机器人能够利用其不断发展的游戏表现方式, 与一个人进行问答会话, 从而填补其知识的空白。 本文展示了一种方法, 教机器人如何利用一个单一的演示和几个由机器人牵头的问答会话的试例, 来学习“ 连接四” 游戏的赢项条件。 我们的结果表明, 机器人可以通过对赢项条件知之甚少, 来学习任意赢项条件, 然后与人一起玩游戏。 我们的实验还显示, 一些问题对于学习“ 连接四” 游戏的赢项条件更为重要。 我们相信, 这种方法可以广泛应用于各种互动学习方案。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
已删除
将门创投
3+阅读 · 2018年10月11日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月4日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
115+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
已删除
将门创投
3+阅读 · 2018年10月11日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员