Spiking neural network (SNN), next generation of artificial neural network (ANN) that more closely mimic natural neural networks offers promising improvements in computational efficiency. However, current SNN training methodologies predominantly employ a fixed timestep approach, overlooking the potential of dynamic inference in SNN. In this paper, we strengthen the marriage between SNN and event-driven processing with a proposal to consider cutoff in SNN, which can terminate SNN anytime during the inference to achieve efficient inference. Two novel optimisation techniques are presented to achieve inference efficient SNN: a Top-K cutoff and a regularisation. The Top-K cutoff technique optimises the inference of SNN, and the regularisation are proposed to affect the training and construct SNN with optimised performance for cutoff. We conduct an extensive set of experiments on multiple benchmark frame-based datsets, such as Cifar10/100, Tiny-ImageNet and event-based datasets, including CIFAR10-DVS, N-Caltech101 and DVS128 Gesture. The experimental results demonstrate the effectiveness of our techniques in both ANN-to-SNN conversion and direct training, affirming their compatibility and potential benefits in enhancing accuracy and reducing inference timestep when integrated with existing methods. Code available: https://github.com/Dengyu-Wu/SNN-Regularisation-Cutoff
翻译:暂无翻译