We consider the Graph Ornstein-Uhlenbeck (GrOU) process observed on a non-uniform discrete time grid and introduce discretised maximum likelihood estimators with parameters specific to the whole graph or specific to each component, or node. Under a high-frequency sampling scheme, we study the asymptotic behaviour of those estimators as the mesh size of the observation grid goes to zero. We prove two stable central limit theorems to the same distribution as in the continuously-observed case under both finite and infinite jump activity for the L\'evy driving noise. When a graph structure is not explicitly available, the stable convergence allows to consider purpose-specific sparse inference procedures, i.e. pruning, on the edges themselves in parallel to the GrOU inference and preserve its asymptotic properties. We apply the new estimators to wind capacity factor measurements, i.e. the ratio between the wind power produced locally compared to its rated peak power, across fifty locations in Northern Spain and Portugal. We show the superiority of those estimators compared to the standard least squares estimator through a simulation study extending known univariate results across graph configurations, noise types and amplitudes.
翻译:我们认为在非统一的离散时间网格上观测到的Ornstein-Uhlenbeck(GroU) 进程, 并引入了离散的最大概率估计器, 其参数与整个图形或每个组件或节点的具体参数不同。 在高频取样计划下, 我们研究这些估计器的无症状行为, 观察网网的网格大小降至零。 我们用新的估计器测量风能因子, 即北西班牙和葡萄牙50个地点当地产生的风力与其定级峰值功率之间的比例。 当没有明确的图形结构时, 稳定的趋同能够考虑到特定目的的稀散推断程序, 即剪裁, 在边缘与格罗乌的推力平行, 并保存其无症状特性。 我们用新的估计器测量风能因子的测量, 即, 当地产生的风能与在水平峰值下产生的峰值功率之间的比, 在北西班牙和葡萄牙的50个地点。 我们通过一个已知的图像模型, 显示这些测量器的优势, 将那些测量器与最起码的平方形的图像结果进行对比。