We consider the Graph Ornstein-Uhlenbeck (GrOU) process observed on a non-uniform discrete time grid and introduce discretised maximum likelihood estimators with parameters specific to the whole graph or specific to each component, or node. Under a high-frequency sampling scheme, we study the asymptotic behaviour of those estimators as the mesh size of the observation grid goes to zero. We prove two stable central limit theorems to the same distribution as in the continuously-observed case under both finite and infinite jump activity for the L\'evy driving noise. When a graph structure is not explicitly available, the stable convergence allows to consider purpose-specific sparse inference procedures, i.e. pruning, on the edges themselves in parallel to the GrOU inference and preserve its asymptotic properties. We apply the new estimators to wind capacity factor measurements, i.e. the ratio between the wind power produced locally compared to its rated peak power, across fifty locations in Northern Spain and Portugal. We show the superiority of those estimators compared to the standard least squares estimator through a simulation study extending known univariate results across graph configurations, noise types and amplitudes.


翻译:我们认为在非统一的离散时间网格上观测到的Ornstein-Uhlenbeck(GroU) 进程, 并引入了离散的最大概率估计器, 其参数与整个图形或每个组件或节点的具体参数不同。 在高频取样计划下, 我们研究这些估计器的无症状行为, 观察网网的网格大小降至零。 我们用新的估计器测量风能因子, 即北西班牙和葡萄牙50个地点当地产生的风力与其定级峰值功率之间的比例。 当没有明确的图形结构时, 稳定的趋同能够考虑到特定目的的稀散推断程序, 即剪裁, 在边缘与格罗乌的推力平行, 并保存其无症状特性。 我们用新的估计器测量风能因子的测量, 即, 当地产生的风能与在水平峰值下产生的峰值功率之间的比, 在北西班牙和葡萄牙的50个地点。 我们通过一个已知的图像模型, 显示这些测量器的优势, 将那些测量器与最起码的平方形的图像结果进行对比。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Estimation of surface area
Arxiv
0+阅读 · 2022年9月2日
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员