Person detection is a crucial task for mobile robots navigating in human-populated environments. LiDAR sensors are promising for this task, thanks to their accurate depth measurements and large field of view. Two types of LiDAR sensors exist: the 2D LiDAR sensors, which scan a single plane, and the 3D LiDAR sensors, which scan multiple planes, thus forming a volume. How do they compare for the task of person detection? To answer this, we conduct a series of experiments, using the public, large-scale JackRabbot dataset and the state-of-the-art 2D and 3D LiDAR-based person detectors (DR-SPAAM and CenterPoint respectively). Our experiments include multiple aspects, ranging from the basic performance and speed comparison, to more detailed analysis on localization accuracy and robustness against distance and scene clutter. The insights from these experiments highlight the strengths and weaknesses of 2D and 3D LiDAR sensors as sources for person detection, and are especially valuable for designing mobile robots that will operate in close proximity to surrounding humans (e.g. service or social robot).
翻译:人类探测是移动机器人在人类居住环境中航行的关键任务。 LiDAR 传感器由于精确的深度测量和大视野,对这项任务很有希望。 存在两种类型的LiDAR 传感器:2D LiDAR 传感器,对单架飞机进行扫描,3D LiDAR 传感器,对多架飞机进行扫描,从而形成一个体积。 它们如何比较人探测任务? 为了回答这个问题,我们进行了一系列实验,利用公众、大型的JackRabbot 数据集和以2D 和 3D LiDAR 为基础的最先进的人探测器(分别为DR-SPAM和CentralPoint)进行实验。我们的实验包括多个方面,从基本的性能和速度比较,到更详细地分析定位准确性和稳健性,以对抗距离和场面的裂缝。这些实验的洞察结果突出了2D 和 3D LiDAR 传感器作为人探测来源的优点和弱点,对于设计将在靠近周围运行的移动机器人(例如服务或社会机器人)尤其有用。