As various forms of fraud proliferate on Ethereum, it is imperative to safeguard against these malicious activities to protect susceptible users from being victimized. While current studies solely rely on graph-based fraud detection approaches, it is argued that they may not be well-suited for dealing with highly repetitive, skew-distributed and heterogeneous Ethereum transactions. To address these challenges, we propose BERT4ETH, a universal pre-trained Transformer encoder that serves as an account representation extractor for detecting various fraud behaviors on Ethereum. BERT4ETH features the superior modeling capability of Transformer to capture the dynamic sequential patterns inherent in Ethereum transactions, and addresses the challenges of pre-training a BERT model for Ethereum with three practical and effective strategies, namely repetitiveness reduction, skew alleviation and heterogeneity modeling. Our empirical evaluation demonstrates that BERT4ETH outperforms state-of-the-art methods with significant enhancements in terms of the phishing account detection and de-anonymization tasks. The code for BERT4ETH is available at: https://github.com/git-disl/BERT4ETH.


翻译:随着以太坊上各种欺诈行为的增多,保护易受攻击的用户免受被利用的危险变得十分重要。虽然当前的研究仅依赖于基于图形的欺诈检测方法,但有人认为它们可能不适合处理高度重复、偏斜分布和异构的以太坊交易。为了应对这些挑战,我们提出了BERT4ETH,这是一个通用的预训练Transformer编码器,用作以太坊各种欺诈行为的帐户表示提取器。BERT4ETH具有Transformer的优越建模能力,可捕捉以太坊交易中固有的动态顺序模式,并通过三种实际有效的策略,即重复性减少、偏斜减轻和异构建模,解决为以太坊预训练BERT模型制定的挑战。我们的经验评估证明BERT4ETH在欺诈行为检测和去匿名化任务方面优于现有的最先进方法。BERT4ETH的代码可在以下位置获得:https://github.com/git-disl/BERT4ETH。

0
下载
关闭预览

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
7+阅读 · 2023年5月18日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员