Recently, audio-visual speech enhancement has been tackled in the unsupervised settings based on variational auto-encoders (VAEs), where during training only clean data is used to train a generative model for speech, which at test time is combined with a noise model, e.g. nonnegative matrix factorization (NMF), whose parameters are learned without supervision. Consequently, the proposed model is agnostic to the noise type. When visual data are clean, audio-visual VAE-based architectures usually outperform the audio-only counterpart. The opposite happens when the visual data are corrupted by clutter, e.g. the speaker not facing the camera. In this paper, we propose to find the optimal combination of these two architectures through time. More precisely, we introduce the use of a latent sequential variable with Markovian dependencies to switch between different VAE architectures through time in an unsupervised manner: leading to switching variational auto-encoder (SwVAE). We propose a variational factorization to approximate the computationally intractable posterior distribution. We also derive the corresponding variational expectation-maximization algorithm to estimate the parameters of the model and enhance the speech signal. Our experiments demonstrate the promising performance of SwVAE.


翻译:最近,在基于变异自动显示器(VAEs)的不受监督的环境下,对视听语音的增强进行了处理。 在这种环境中,培训期间只使用清洁数据来训练一个语音变异模型,这种变异模型在测试时与噪音模型相结合,例如,非负矩阵因子化(NMF),其参数是不经监督而学习的。因此,拟议的模型对噪音类型具有不可知性。当视觉数据清洁时,基于视听VAE的建筑通常优于音异的对应结构时。当视觉数据被杂交损坏时,情况正好相反,例如,演讲者没有面对相机。在本文件中,我们提议通过时间找到这两种结构的最佳组合。更准确地说,我们采用与Markovian依赖的潜在的相近性变异变量,以非超强的方式在不同的VAE结构之间转换:导致转换变异自动编码(SwVAE)。我们建议采用变异因因因子化系数,以接近可计算性化的后台式模型分布信号,例如,发言者不面对镜头。我们还提出相应的SVAVAVE变式参数估计。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员