The benefits of the wavelet approach for density estimation are well established in the literature, especially when the density to estimate is irregular or heterogeneous in smoothness. However, wavelet density estimates are typically not bona fide densities. In Aya-Moreno et al (2018), a `shape-preserving' wavelet density estimator was introduced, including as main step the estimation of the square-root of the density. A natural concept involving square-root of densities is the Hellinger distance - or equivalently, the Bhattacharyya affinity coefficient. In this paper, we deliver a fully data-driven version of the above 'shape-preserving' wavelet density estimator, where all user-defined parameters, such as resolution level or thresholding specifications, are selected by optimising an original leave-one-out version of the Hellinger-Bhattacharyya criterion. The theoretical optimality of the proposed procedure is established, while simulations show the strong practical performance of the estimator. Within that framework, we also propose a novel but natural 'jackknife thresholding' scheme, which proves superior to other, more classical thresholding options.
翻译:在文献中,密度估计的波盘方法的优点在文献中已经确立,特别是在估计密度的密度不固定或光滑不均时,尤其是当估计密度的密度不固定或不均匀时,波盘密度估计通常不是真正的密度。在Aya-Moreno等人(2018年),采用了“shape-plave”波盘密度估计仪,包括将密度的正方根估计作为主要步骤。涉及密度的平根的自然概念是Hellinger距离-或等量的Bhattacharyya亲近系数。在本文中,我们提供了上述“shape-plave”波盘密度完全由数据驱动的版本。在Aya-Moreno等人(2018年)中,所有用户定义的参数,如分辨率或阈值标准,都是通过优化Hellinger-Bhattacharyya标准原始的离线一号版本来选择的。提议的程序的理论最优化性是Hellinger距离-或相当的Bhattachacharyya系数。在本文中,我们还提出了一种新但自然但自然的门槛阈值更优的模型。