We present completeness results for inference in Bayesian networks with respect to two different parameterizations, namely the number of variables and the topological vertex separation number. For this we introduce the parameterized complexity classes $\mathsf{W[1]PP}$ and $\mathsf{XLPP}$, which relate to $\mathsf{W[1]}$ and $\mathsf{XNLP}$ respectively as $\mathsf{PP}$ does to $\mathsf{NP}$. The second parameter is intended as a natural translation of the notion of pathwidth to the case of directed acyclic graphs, and as such it is a stronger parameter than the more commonly considered treewidth. Based on a recent conjecture, the completeness results for this parameter suggest that deterministic algorithms for inference require exponential space in terms of pathwidth and by extension treewidth. These results are intended to contribute towards a more precise understanding of the parameterized complexity of Bayesian inference and thus of its required computational resources in terms of both time and space.
翻译:我们提出了巴伊西亚网络中两个不同参数的推断结果的完整性,这两个参数是变量数和表层顶点分离数。 为此,我们引入了参数化复杂等级$\mathsf{W[1,PP}$和$\mathsf{W[1,1]}美元和$\mathsf{XNLP}$,分别与美元和$\mathsf{XNLP}美元相关,相当于$\mathsf{PP}美元,相当于$\mathsfsf{NP}美元。第二个参数意在将路径的精度概念自然转换为定向环形图,因此比通常认为的树枝节值更强。根据最近的一个投射,该参数的完整性结果表明,关于推断的确定性算法要求路径线宽度和扩展树宽度的指数空间空间空间空间空间空间空间空间。这些结果旨在帮助更准确地理解Bayesian的参数复杂性,从而在时间和空间的计算资源方面有助于更精确地理解。