Bridge sampling is a powerful Monte Carlo method for estimating ratios of normalizing constants. Various methods have been introduced to improve its efficiency. These methods aim to increase the overlap between the densities by applying appropriate transformations to them without changing their normalizing constants. In this paper, we first give a new estimator of the asymptotic relative mean square error (RMSE) of the optimal Bridge estimator by equivalently estimating an $f$-divergence between the two densities. We then utilize this framework and propose $f$-GAN-Bridge estimator ($f$-GB) based on a bijective transformation that maps one density to the other and minimizes the asymptotic RMSE of the optimal Bridge estimator with respect to the densities. This transformation is chosen by minimizing a specific $f$-divergence between the densities using an $f$-GAN. We show $f$-GB is optimal in the sense that within any given set of candidate transformations, the $f$-GB estimator can asymptotically achieve an RMSE lower than or equal to that achieved by Bridge estimators based on any other transformed densities. Numerical experiments show that $f$-GB outperforms existing methods in simulated and real-world examples. In addition, we discuss how Bridge estimators naturally arise from the problem of $f$-divergence estimation.


翻译:蒙特卡洛桥取样是估算正常常数比率的强有力的蒙特卡洛桥取样方法。 采用了各种方法来提高效率。 这些方法的目的是通过在不改变正常常数的情况下对密度进行适当变换来增加密度之间的重叠。 在本文中, 我们首先给最佳大桥估计器( RMSE) 的无光度相对平均正方差( RMSE) 进行新的估计, 以等值估计两个密度之间的差异。 我们然后使用这个框架, 并提议美元- GAN- Bridge 估计器( f- GB 美元 美元 ), 其基础是将密度映射到另一个密度, 并尽量减少最佳大桥估计器的无亮度值值值。 选择这种改变的方式是使用 $- 美元- GAN 等量估计密度之间的具体值调高。 我们显示 $- GB 是最佳的方法, 因为在任何特定的候选变换变换组合中, 美元- 以美元- GB 估测值为美元- 平面 平面 的平面 平面 平面 平面, 平面 平面 平面 平面, 平面 平面 平面 平面 平面 平面 平面 平面, 平面 平面 平面 平面, 平面 平面 平面 平面 平面, 平面 平面 平面, 平面, 平面 平面 平面 平面, 平面 平面 平面, 平面 平面 平面 平面 平面,,, 平面 平面 平面 平面 平面 平面,, 平面 平面,,, 平面, 平面 平面 平面 平面 平面 平面 平面 平面,, 平面 平面 平面 平面 平面 平面 平面,,, 平面 平面, 平面 平面 平面 平面 平面,, 平面 平面 平面 平面 平

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【DeepMind-NeurIPS 2020】元训练代理实现Bayes-optimal代理
专知会员服务
11+阅读 · 2020年11月1日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员