This paper deals with the discrete system being the finite-difference approximation of the Sturm-Liouville problem with frozen argument. The inverse problem theory is developed for this discrete system. We describe the two principal cases: degenerate and non-degenerate. For these two cases, appropriate inverse problems statements are provided, uniqueness theorems are proved, and reconstruction algorithms are obtained. Moreover, the relationship between the eigenvalues of the continuous problem and its finite-difference approximation is investigated. We obtain the "correction terms" for approximation of the discrete problem eigenvalues by using the eigenvalues of the continuous problem. Relying on these results, we develop a numerical algorithm for recovering the potential of the Sturm-Liouville operator with frozen argument from a finite set of eigenvalues. The effectiveness of this algorithm is illustrated by numerical examples.
翻译:本文涉及离散系统, 即Sturm- Liouville问题与冷冻参数的有限差异近似值。 反向问题理论是为这个离散系统开发的。 我们描述了两个主要案例: 退化和非退化。 对于这两个案例, 我们提供了适当的反向问题陈述, 证明了独一性理论, 并获得了重建算法。 此外, 还要调查持续问题的双元值与其有限差异近近似值之间的关系 。 我们通过使用连续问题的双元值获取离散问题电子值近近近的“ 校正条件 ” 。 根据这些结果, 我们开发了一种数字算法, 利用有限的一套电子价值的固定参数来恢复Sturm- Liouville经营者的潜力 。 这种算法的有效性可以用数字示例来说明 。