We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on its values. This leads to a straightforward procedure for posterior inference via an MCMC procedure. We give theoretical performance guarantees (contraction rates for the posterior) for the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on synthetic and real data examples.
翻译:我们研究一种非参数的贝叶斯方法来估计由伽马进程驱动的随机差分方程式的挥发性功能。挥发性功能是先验的,先制成片常数,我们先用其值指定伽马。这导致通过MCMCM程序对后推推推法采取直截了当的程序。我们从未知波动函数的规律性角度为巴伊斯估计提供理论性能保障(后推率)。我们举例说明合成和真实数据实例的方法。