The General Associative Memory Model (GAMM) has a constant state-dependant energy surface that leads the output dynamics to fixed points, retrieving single memories from a collection of memories that can be asynchronously preloaded. We introduce a new class of General Sequential Episodic Memory Models (GSEMM) that, in the adiabatic limit, exhibit temporally changing energy surface, leading to a series of meta-stable states that are sequential episodic memories. The dynamic energy surface is enabled by newly introduced asymmetric synapses with signal propagation delays in the network's hidden layer. We study the theoretical and empirical properties of two memory models from the GSEMM class, differing in their activation functions. LISEM has non-linearities in the feature layer, whereas DSEM has non-linearity in the hidden layer. In principle, DSEM has a storage capacity that grows exponentially with the number of neurons in the network. We introduce a learning rule for the synapses based on the energy minimization principle and show it can learn single memories and their sequential relationships online. This rule is similar to the Hebbian learning algorithm and Spike-Timing Dependent Plasticity (STDP), which describe conditions under which synapses between neurons change strength. Thus, GSEMM combines the static and dynamic properties of episodic memory under a single theoretical framework and bridges neuroscience, machine learning, and artificial intelligence.
翻译:General Assodic 内存模型( GAMM) 具有恒定的状态依赖能量表面, 将输出动态动态引向固定点, 从一系列记忆中取回单一记忆, 这些记忆可以不同步地预先加载。 我们引入了一个新的普通序列 Episodi 内存模型( GSEMM ) 类别, 在不对称界限中, 显示暂时变化的能量表面, 导致一系列元稳定状态, 它们是相继的相继记忆。 动态能源表面是由新引入的不对称突触点促成的, 其信号在网络隐藏层的神经传播延迟。 我们研究两个记忆模型的理论和经验属性, 其启动功能不同。 LISEM 在特性层中具有非线性, 而 DSEM 在隐藏层中则具有非线性。 原则上, DSEM 的存储能力随着网络神经元的数量而迅速增长。 我们引入了基于能源最小化原则的神经突触觉的学习规则, 并显示它在网络中学习单一的记忆和连续关系中, ASyalimalma alial deal deal deal lactional dal laction degal degraphal degraphal degal deal dex.