Stiff hyperbolic balance laws exhibit large spectral gaps, especially if the relaxation term significantly varies in space. Using examples from rarefied gases and the general form of the underlying balance law model, we perform a detailed spectral analysis of the semi-discrete model that reveals the spectral gaps. Based on that, we show the inefficiency of standard time integration schemes expressed by a severe restriction of the CFL number. We then develop the first spatially adaptive projective integration schemes to overcome the prohibitive time step constraints of standard time integration schemes. The new schemes use different time integration methods in different parts of the computational domain, determined by the spatially varying value of the relaxation time. We use our analytical results to derive accurate stability bounds for the involved parameters and show that the severe time step constraint can be overcome. The new adaptive schemes show good accuracy in a numerical test case and can obtain a large speedup with respect to standard schemes.


翻译:硬硬双曲平衡法显示出巨大的光谱差距,特别是如果放松术语在空间上差别很大。我们使用稀有气体的实例和基本平衡法模型的一般形式,对显示光谱差距的半分立模型进行详细的光谱分析;在此基础上,我们显示了标准时间整合计划的效率低下,表现为对CFL号的严格限制。然后我们制定了第一个空间适应性投影整合计划,以克服标准时间整合计划令人望而却步的时间限制。新的计划在计算领域的不同部分使用不同的时间整合方法,由放松时间的不同价值决定。我们利用分析结果为所涉参数得出准确的稳定性界限,并表明可以克服严重的时间步骤限制。新的适应计划在数字测试中表现出准确性,并能够在标准计划方面大大加快速度。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月16日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员