Stiff hyperbolic balance laws exhibit large spectral gaps, especially if the relaxation term significantly varies in space. Using examples from rarefied gases and the general form of the underlying balance law model, we perform a detailed spectral analysis of the semi-discrete model that reveals the spectral gaps. Based on that, we show the inefficiency of standard time integration schemes expressed by a severe restriction of the CFL number. We then develop the first spatially adaptive projective integration schemes to overcome the prohibitive time step constraints of standard time integration schemes. The new schemes use different time integration methods in different parts of the computational domain, determined by the spatially varying value of the relaxation time. We use our analytical results to derive accurate stability bounds for the involved parameters and show that the severe time step constraint can be overcome. The new adaptive schemes show good accuracy in a numerical test case and can obtain a large speedup with respect to standard schemes.
翻译:硬硬双曲平衡法显示出巨大的光谱差距,特别是如果放松术语在空间上差别很大。我们使用稀有气体的实例和基本平衡法模型的一般形式,对显示光谱差距的半分立模型进行详细的光谱分析;在此基础上,我们显示了标准时间整合计划的效率低下,表现为对CFL号的严格限制。然后我们制定了第一个空间适应性投影整合计划,以克服标准时间整合计划令人望而却步的时间限制。新的计划在计算领域的不同部分使用不同的时间整合方法,由放松时间的不同价值决定。我们利用分析结果为所涉参数得出准确的稳定性界限,并表明可以克服严重的时间步骤限制。新的适应计划在数字测试中表现出准确性,并能够在标准计划方面大大加快速度。