Call for Papers: the 26th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2018) .
UMAP是一个有着长久历史的国际会议,主要是探讨用户建模与个性化等方面的研究进展。会议氛围良好,讨论积极深入,相关领域的专家学者常连续多年参会,社区稳定又有活力。该会议之前一直在欧美举办,UMAP 2018将是该会第一次移步亚洲,拥抱亚洲各国的广泛研究人员。
UMAP 2018选址新加坡,比邻亚洲各国,美丽富饶。新加坡属华人社会,语言沟通无障碍,非常方便大家往来参会。会议内容丰富,场外活地多样有趣,将会安排在夜间动物园吃晚餐,免费门票去美丽的滨海湾花园等。
UMAP 2018由南洋理工大学张杰教授牵头举办,多个单位协办的国际性综合顶级学术会议。张杰教授是一个在信任建模、用户个性化、隐私与安全等方面有着诸多成就的年轻学者,学风严谨,为人豁达,非常愿意与更多的研究人员深入交流与沟通。更多信息可查看:http://www.ntu.edu.sg/home/zhangj
UMAP 2018的投稿信息与具体的征稿领域内容如下。
SUBMISSIONS
Papers should be submitted through EasyChair (https://easychair.org/conferences/?conf=acmumap2018).
The User Modeling, Adaptation, and Personalization (UMAP) 2018 Conference will include high quality peer-reviewed papers related to the below key areas. Maintaining the high quality and impact of the UMAP series, each paper will have three reviews by program committee members and a meta-review presenting the reviewers’ consensual view; the review process will be coordinated by the program chairs in collaboration with the corresponding area chairs.
Long (8 pages + references) and Short (4 pages + references) papers in ACM style Peer reviewed, original, and principled research papers addressing both the theory and practice of UMAP and papers showcasing innovative use of UMAP and exploring the benefits and challenges of applying UMAP technology in real-life applications and contexts are welcome.
Long papers should present original reports of substantive new research techniques, findings, and applications of UMAP. They should place the work within the field and clearly indicate innovative aspects. Research procedures and technical methods should be presented in sufficient detail to ensure scrutiny and reproducibility. Results should be clearly communicated and implications of the contributions/findings for UMAP and beyond should be explicitly discussed.
Short papers should present original and highly promising research or applications. Merit will be assessed in terms of originality and importance rather than maturity, extensive technical validation, and user studies.
Separation of long and short papers will be strictly enforced so papers will not compete across categories, but only within each category. Papers that receive high scores and are considered promising by reviewers, but didn’t make the acceptance cut, will be directed to the poster session of the conference and will be invited to be resubmitted as posters.
Submission due
Abstract: February 18, 2018
Full paper: February 25, 2018
TRACKS
1. Personalized Recommender Systems
Dietmar Jannach, TU Dortmund, Germany
Markus Zanker, Free University of Bolzano-Bozen, Italy
Personalized, computer-generated recommendations have become a pervasive feature of today’s online world. The underlying recommender systems are designed to help users and providers in a number of ways. From a user’s viewpoint, for example, these systems assist consumers in finding relevant things within large item collections. On the other hand, from a provider’s perspective, recommenders have also shown to be valuable tools to steer consumer behavior. From a technical perspective, the design of such systems requires the careful consideration of various aspects, including the choice of the user modeling approach, the underlying recommendation algorithm, and the user interface. This track aims to provide a forum for researchers and practitioners to discuss open challenges, latest solutions and novel research approaches in the field of recommender systems. Besides the above-mentioned technical aspects, works are also particularly welcome that address questions related to the user perception and the business value of recommender systems.
Topics include (but are not limited to):
Recommendation algorithms and their evaluation
User modeling and preference elicitation
Users’ perception of recommender systems
Business value of recommendation systems and multi-stakeholder environments
Explanations and trust
Context-aware recommendation algorithms
Recommending to groups of users
Case studies of real-world implementations
2. Adaptive Hypermedia and the Semantic Web
Peter Brusilovsky, Univ. of Pittsburgh, USA
Geert-Jan Houben, TU Delft, The Netherlands
Adaptive hypermedia and adaptive web explore alternatives to the traditional “one-size-fits-all” approach in the development of web and hypermedia systems. Adaptive hypermedia and adaptive web systems build a model of the interests, preferences and knowledge of each individual user, and use this model in order to adapt the behavior of hypermedia and web systems to the needs of that user. Semantic web frequently serves as an infrastructure to enable adaptive and personalized Web systems. Semantic web technology targets the use of explicit semantics and metadata to help web systems perform the desired functionality: this implies the use of linked data from the web, the use of ontologies in models, or the use of metadata in user interfaces. This track aims to provide a forum to researchers to discuss open research problems, solid solutions, latest challenges, novel applications and innovative research approaches in adaptive hypermedia and semantic web.
Topics include (but are not limited to):
Web user profiles
Adaptive navigation support
Personalized search
Web content adaptation
Analytics of web user data
Adaptive Web sites and portals
Adaptive books and textbooks
Social navigation and social search
Navigation support in continuous media and virtual environments
Usability engineering for adaptive hypermedia and Web systems
Novel methodologies for evaluating adaptive hypermedia and Web systems
Semantic Web technologies for Web personalization
Ontology-based data access and integration/exchange on the adaptive web
Ontology engineering and ontology patterns for the adaoptive web
Semantic social network mining, analysis, representation, and management
Crowdsourcing semantics; methods, dynamics, and challenges
Semantic Web and Linked Data for adaptation
3. Intelligent User Interfaces
Shlomo Berkovsky, CSIRO, Australia
Markus Schedl, Johannes Kepler University Linz, Austria
Intelligent User Interfaces aim to improve the interaction between computer systems and human users by means of Artificial Intelligence. The systems support and complement different types of abilities that are normally unavailable in the context of human-only cognition. Previous work has found that humans do not always make the best possible decisions when working together with computer systems. By designing and deploying improved forms of support for interactive collaboration between human decision makers and systems, we can enable decision making processes that better leverage the strengths of both collaborators. More generally this research track can be characterised by exploring how to make the interaction between computers and people smarter and more productive, which may leverage solutions from human-computer interaction, data mining, natural language processing, information visualisation, and knowledge representation and reasoning.
Topics include (but are not limited to):
Adaptive personal virtual assistants (e.g., Siri, Cortana, Alexa)
Adapting natural interaction (e.g., natural language, speech, gesture)
Multi-modal interfaces (speech, gestures, eye gaze, face, physiological info, etc.)
Intelligent wearable and mobile interfaces
Smart environments and tangible computing
Transparency and control of decision support systems (e.g., semi-autonomous systems)
Explainable intelligent user interfaces
Affective and aesthetic interfaces
Tailored persuasion and argumentation interfaces
Tailored decision support (e.g., over- and under-reliance in uncertain domains)
Adaptive information visualization
Scalability of intelligent user interfaces to access huge datasets
Novel methodologies and real-world implementations of IUI
User-centric studies of interactions with intelligent user interfaces
Novel datasets and use cases for intelligent user interfaces
4. Technology-Enhanced Adaptive Learning
Olga Santos, UNED, Spain
Carla Limongelli, Università Degli Studi Roma Tre, Italy
Learning is a very complex human process that involves cognitive, affective and psychomotor aspects. Smart technological solutions are expected to identify and model the learning needs in these three aspects and provide personalized adapted support that can improve the effectiveness and efficiency of learning experiences. Technological innovations bring new opportunities to recognize learner’s needs and how to orchestrate suitable learning solutions, with and without the involvement of the teacher. This covers not only formal educational settings, but also lifelong learning requirements (including workplace training) as well as the acquisition of skills (e.g., in daily activities, serious games, etc.).
To address the wide spectrum of modeling issues and challenges that can be raised, contributions from various research areas are necessary. Therefore, this track invites researchers, developers, and practitioners from various disciplines to present their innovative learning solutions, share acquired experience, and discuss the main modeling challenges for personalized adaptive learning.
Topics include (but are not limited to):
Domain, learner, teacher and context modeling
Modeling cognitive, affective and psychomotor aspects of learning
Adaptive and personalized support for learning, diagnosis and feedback
Agent-based learning environments and virtual pedagogical agents
Open corpus personalized learning
Collaborative and group learning
UMAP aspects in specific learning solutions: educational recommender systems, intelligent tutoring systems, serious games, personal learning environments, MOOCs,...
Wearable technologies and augmented reality in adaptive personalized learning
Processing collected data for UMAP: educational data mining, learning analytics, big data, deep learning…
Semantic web and ontologies for e-learning
Interoperability, portability, and scalability issues
Case studies in real-world educational settings
5. Personalized Social Web
Cecile Paris, CSIRO, Australia
Julita Vassileva, University of Saskatchewan, Canada
The massive uptake of numerous social media platforms on the web gave rise the Social Web, where people can obtain, disseminate and share information, interact, collaborate and form communities (social networks), through a variety of means. A number of research questions arise, for example how to model the flow of information through the social web, understand people’s experiences and the effectiveness of online social networks, identify users or communities with behaviour potentially harmful to themselves or others, gain insights into society, or design, develop and evaluate automated personalization tools to improve the individual user experience.
We invite original submission addressing all aspects of personalization and personal experience in online social systems.
Topics include (but are not limited to):
Personalization of the web experience in social systems
Social and crowd-generated data for personalization
Wisdom of the crowd, human computation and collective intelligence for personalization
Incentives for participation and persuasion in online communities
Use of online social data for personalized offline experiences
Behavior modeling of individuals, groups, and communities
Dynamics of social collaborative systems
Analysis of information flows in social networks
Opinion mining and social media analytics
Biases and individual/local perception in social systems
Adaptations based on personality, society, and culture
Privacy, perceived security, and trust in social systems
Ethical issues involved in studying the social web
Personalization algorithms and protocols inspired by human societies
Machine learning for personalization
Evaluation methodologies for the social web
IMPORTANT DATES
Submission due
Abstract: February 18, 2018
Full paper: February 25, 2018
Notification: Apri 1, 2018
Camera-ready: May 6, 2018
Note: The submissions times are 11:59pm Hawaii time.
FORMAT DETAILS AND PUBLICATION
Page limits: Long papers - 8 pages + references; Short pages: 4 pages + references. Note that the references do not count towards page limits. Papers that exceed the page limits or formatting guidelines will be returned without review.
Submissions should be single blinded, i.e. authors names should be included in the submissions. Papers must be formatted using the ACM SIG Standard (SIGCONF) proceedings template: https://www.acm.org/publications/proceedings-template. Please note that ACM changed its templates at the start of 2017, so please ensure that you use the new template and do not reuse an old template.
All accepted papers will be published by ACM and will be available via the ACM Digital Library. At least one author of each accepted paper must register for the conference and present the paper there.
AUTHORS TAKE NOTE: The official publication date is the date the proceedings are made available in the ACM Digital Library. This date may be up to two weeks prior to the first day of your conference. The official publication date affects the deadline for any patent filings related to published work. (For those rare conferences whose proceedings are published in the ACM Digital Library after the conference is over, the official publication date remains the first day of the conference.)
注:公众号回复“社区群”,即可加入LibRec社区群。