The vicinal risk minimization (VRM) principle is an empirical risk minimization (ERM) variant that replaces Dirac masses with vicinal functions. There is strong numerical and theoretical evidence showing that VRM outperforms ERM in terms of generalization if appropriate vicinal functions are chosen. Mixup Training (MT), a popular choice of vicinal distribution, improves the generalization performance of models by introducing globally linear behavior in between training examples. Apart from generalization, recent works have shown that mixup trained models are relatively robust to input perturbations/corruptions and at the same time are calibrated better than their non-mixup counterparts. In this work, we investigate the benefits of defining these vicinal distributions like mixup in latent space of generative models rather than in input space itself. We propose a new approach - \textit{VarMixup (Variational Mixup)} - to better sample mixup images by using the latent manifold underlying the data. Our empirical studies on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that models trained by performing mixup in the latent manifold learned by VAEs are inherently more robust to various input corruptions/perturbations, are significantly better calibrated, and exhibit more local-linear loss landscapes.


翻译:昆虫风险最小化(VRM)原则是一种实验性风险最小化(ERM)变体,它取代了Dirac质量,代之以昆虫功能。有强有力的数字和理论证据表明,如果选择适当的昆虫功能,VRM在一般化方面优于机构风险管理。混合培训(MT)是流行的昆虫分布的一种选择,它通过在培训实例中引入全球线性行为,提高了模型的通用性能。除了概括化外,最近的工作表明,经过培训的混合模型对于输入扰动/腐败比较强大,同时比非混合功能对等模型进行更好的校准。在这项工作中,我们调查了在基因化模型潜在空间而不是投入空间中混合等这些昆虫分布定义的优点。我们提出了一种新的方法 -\ textit{VarMixupupupup(Variational Mixupupupup ) - 通过利用潜层层数据更好地混合图像。我们关于CIFAR-10、CIFAR-100和Tiy-ImageNet的经验性研究显示,通过对各种深层的模型进行更牢固的模型进行更强有力的模拟化的模拟模拟的模拟模拟的模拟的学习,这些模型是更精化的模型,通过在各种的模拟的模型上进行更精化的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的演示。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月14日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员