We introduce a new preconditioner for a recently developed pressure-robust hybridized discontinuous Galerkin (HDG) finite element discretization of the Stokes equations. A feature of HDG methods is the straightforward elimination of degrees-of-freedom defined on the interior of an element. In our previous work (J. Sci. Comput., 77(3):1936--1952, 2018) we introduced a preconditioner for the case in which only the degrees-of-freedom associated with the element velocity were eliminated via static condensation. In this work we introduce a preconditioner for the statically condensed system in which the element pressure degrees-of-freedom are also eliminated. In doing so the number of globally coupled degrees-of-freedom are reduced, but at the expense of a more difficult problem to analyse. We will show, however, that the Schur complement of the statically condensed system is spectrally equivalent to a simple trace pressure mass matrix. This result is used to formulate a new, provably optimal preconditioner. Through numerical examples in two- and three-dimensions we show that the new preconditioned iterative method converges in fewer iterations, has superior conservation properties for inexact solves, and is faster in CPU time when compared to our previous preconditioner.


翻译:我们引入了一个新的先决条件, 即最近开发的压力- 气压混合不连续的 Galerkin (HDG) 的有限元素离散 Stokes 方程式。 HDG 方法的一个特征是直截了当地消除一个元素内部定义的自由度。 在先前的工作( J. Sci. Comput., 77(3): 1936-1952, 2018)中, 我们引入了一个新的先决条件, 即仅通过静态凝结消除与元素速度相关的自由度。 在这项工作中, 我们引入了静态压缩系统的一个先决条件, 使元素压力度- 自由度也被取消了。 在这样做时, 与全球相伴的自由度数量减少, 但却牺牲了更难分析的问题。 但是, 我们将会显示, 静态压缩系统的Schur 补充光谱相当于一个简单的微量压力矩阵。 这个结果被用来构建一个新的、 最优化的前提条件。 通过两个和三个二维的系统中的数字示例, 在两个和三个二维特的系统中, 我们比前置的前置前置前置的特性更高级的特性显示, 更快的保存比前置方法更高级前置的特性更接近。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年9月11日
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Arxiv
0+阅读 · 2021年12月13日
VIP会员
Top
微信扫码咨询专知VIP会员