Most methods for publishing data with privacy guarantees introduce randomness into datasets which reduces the utility of the published data. In this paper, we study the privacy-utility tradeoff by taking maximal leakage as the privacy measure and the expected Hamming distortion as the utility measure. We study three different but related problems. First, we assume that the data-generating distribution (i.e., the prior) is known, and we find the optimal privacy mechanism that achieves the smallest distortion subject to a constraint on maximal leakage. Then, we assume that the prior belongs to some set of distributions, and we formulate a min-max problem for finding the smallest distortion achievable for the worst-case prior in the set, subject to a maximal leakage constraint. Lastly, we define a partial order on privacy mechanisms based on the largest distortion they generate. Our results show that when the prior distribution is known, the optimal privacy mechanism fully discloses symbols with the largest prior probabilities, and suppresses symbols with the smallest prior probabilities. Furthermore, we show that sets of priors that contain more uniform distributions lead to larger distortion, while privacy mechanisms that distribute the privacy budget more uniformly over the symbols create smaller worst-case distortion.


翻译:使用隐私保障发布数据的大多数方法都会在数据集中引入随机性,从而降低已公布数据的效用。 在本文中,我们研究隐私效用权衡,将最大渗漏作为隐私衡量标准,并将预期的咸明扭曲作为效用衡量标准。 我们研究了三个不同但相关的问题。 首先,我们假设数据生成分布(即先前的)已经为人所知,并且我们发现最佳隐私机制可以实现最小的扭曲,但受最大渗漏的限制。 然后,我们假设先前的偏差属于某些批发系统,我们制定了一个最小最大问题,以找到最坏的漏泄密前一套最坏情况可以实现最小的扭曲,但受最大漏漏漏漏限制。 最后,我们根据它们产生的最大扭曲,界定了隐私机制的部分顺序。 我们的结果表明,当知道先前的分布时,最佳的隐私机制充分披露了具有最大前几率的符号,并抑制了最小的先前概率的符号。 此外,我们显示,前几套包含更统一的分布导致更大变形,而最差的隐私机制则以最小的缩的符号为基础。

0
下载
关闭预览

相关内容

应用机器学习书稿,361页pdf
专知会员服务
57+阅读 · 2020年11月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月18日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员