In this paper, we propose a novel primal-dual proximal splitting algorithm (PD-PSA), named BALPA, for the composite optimization problem with equality constraints, where the loss function consists of a smooth term and a nonsmooth term composed with a linear mapping. In BALPA, the dual update is designed as a proximal point for a time-varying quadratic function, which balances the implementation of primal and dual update and retains the proximity-induced feature of classic PD-PSAs. In addition, by this balance, BALPA eliminates the inefficiency of classic PD-PSAs for composite optimization problems in which the Euclidean norm of the linear mapping or the equality constraint mapping is large. Therefore, BALPA not only inherits the advantages of simple structure and easy implementation of classic PD-PSAs but also ensures a fast convergence when these norms are large. Moreover, we propose a stochastic version of BALPA (S-BALPA) and apply the developed BALPA to distributed optimization to devise a new distributed optimization algorithm. Furthermore, a comprehensive convergence analysis for BALPA and S-BALPA is conducted, respectively. Finally, numerical experiments demonstrate the efficiency of the proposed algorithms.
翻译:在本文中,我们提出了名为BALPA的新颖的初等双极准分裂算法(PD-PSA),用于处理带有平等制约的综合优化问题,损失函数包括一个顺利的术语和一个非moot 术语,由线性绘图组成。在BALPA中,双重更新设计为具有时间变化的二次函数的近似点,平衡原始更新和双重更新的实施,并保留经典PD-PSA的近距离诱导特征。此外,通过这一平衡,BALPA消除了传统的PD-PSA在综合优化问题上效率低下的问题,在综合优化问题上线性绘图或平等制约绘图的Eucliidean规范是很大的。因此,BALPA不仅继承了简单结构和易于实施经典PD-PSA的优势,而且当这些规范规模大时,还确保快速趋同。此外,我们提出了一种“BALPA”(S-BALPA)的随机版本,并将开发的BALPA用于分配优化以设计新的分布式优化算法的新的分布式优化算法。此外,BAL-AA进行的全面趋同性分析,最后是“BAAAAA”的数值实验。