Image registration aims to establish spatial correspondence across pairs, or groups of images, and is a cornerstone of medical image computing and computer-assisted-interventions. Currently, most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous, which is not always valid for real-world scenarios, especially in medical image registration (e.g. cardiac imaging and abdominal imaging). Such a global constraint can lead to artefacts and increased errors at discontinuous tissue interfaces. To tackle this issue, we propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR), to obtain better registration performance and realistic deformation fields. We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images from UK Biobank Imaging Study (UKBB), than state-of-the-art approaches.
翻译:图像登记旨在建立双对或一组图像之间的空间通信,并且是医学图像计算和计算机辅助干预的基石。 目前,大多数深层次的基于学习的登记方法假定,理想的变形场是全球平滑和连续的,对于现实世界的情景并不总是有效,特别是在医学图像登记(如心脏成像和腹部成像)方面。这种全球限制可能导致人工制品和不连续组织界面的错误增加。为了解决这一问题,我们提议建立一个监督不力的深相异性保护图像登记网(DDIR),以获得更好的登记性能和现实的变形场。我们证明,我们的方法在登记准确性方面取得了显著改进,并预测了更现实的变形,在英国生物银行成像研究(UKBB)的心脏磁共振图像登记实验中,比在最先进的方法中(UKBBB)更现实的变形。