Video content is watched not only by humans, but increasingly also by machines. For example, machine learning models analyze surveillance video for security and traffic monitoring, search through YouTube videos for inappropriate content, and so on. In this paper, we propose a scalable video coding framework that supports machine vision (specifically, object detection) through its base layer bitstream and human vision via its enhancement layer bitstream. The proposed framework includes components from both conventional and Deep Neural Network (DNN)-based video coding. The results show that on object detection, the proposed framework achieves 13-19% bit savings compared to state-of-the-art video codecs, while remaining competitive in terms of MS-SSIM on the human vision task.
翻译:视频内容不仅为人类所观看,而且越来越多地为机器所观看。例如,机器学习模型分析监控视频用于安全和交通监测,通过YouTube视频搜索不适当的内容等等。在本文中,我们提出了一个可扩缩的视频编码框架,通过机器的基本层位流(具体而言,物体探测)支持机器视觉(具体而言,物体探测),并通过增强层位流支持人类视觉。拟议框架包括常规和深神经网络(DNN)基于视频编码的组件。结果显示,在物体探测方面,拟议框架比最先进的视频编码器节省了13-19%,同时在MS-SSIM的人类视觉任务方面仍然具有竞争力。