The PROBA-V Super-Resolution challenge distributes real low-resolution image series and corresponding high-resolution targets to advance research on Multi-Image Super Resolution (MISR) for satellite images. However, in the PROBA-V dataset the low-resolution image corresponding to the high-resolution target is not identified. We argue that in doing so, the challenge ranks the proposed methods not only by their MISR performance, but mainly by the heuristics used to guess which image in the series is the most similar to the high-resolution target. We demonstrate this by improving the performance obtained by the two winners of the challenge only by using a different reference image, which we compute following a simple heuristic. Based on this, we propose PROBA-V-REF a variant of the PROBA-V dataset, in which the reference image in the low-resolution series is provided, and show that the ranking between the methods changes in this setting. This is relevant to many practical use cases of MISR where the goal is to super-resolve a specific image of the series, i.e. the reference is known. The proposed PROBA-V-REF should better reflect the performance of the different methods for this reference-aware MISR problem.


翻译:PROBA-V Super-分辨率挑战分配了真实的低分辨率图像系列和相应的高分辨率目标,以推动对卫星图像的多图像超级分辨率(MISR)的研究。然而,在PROBA-V数据集中,没有确定与高分辨率目标相对应的低分辨率图像。我们争辩说,在这样做时,挑战不仅按其低分辨率图像系列的性能,而且主要根据用于猜测该系列中哪些图像与高分辨率目标最为相似的超强图像系列的超强分辨率(MISR)来排列拟议方法。我们通过使用不同的参考图像来改进挑战中两个获奖者获得的性能来证明这一点。我们根据这种图像进行计算,我们提议PROBA-V-REF为PROBA-V数据集的变式,其中提供了低分辨率系列的参考图像,并表明该系列中方法变化的等级。这与MISR的许多实际使用案例有关,其中的目标是超级解析出该系列的具体图像,即参考文献为人们所了解的参考。我们提出的PRBA-V-REF数据集的性能问题应当更好地反映不同的方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员