We propose a new approach for constructing prediction sets for Transformer networks via the strong signals for prediction reliability from KNN-based approximations. This enables a data-driven partitioning of the high-dimensional feature space and a new Inductive Venn Predictor for calibration, the Venn-ADMIT Predictor. Our approach more closely obtains approximate conditional coverage than recent work proposing adaptive and localized conformal score functions for deep networks. We analyze coverage on several representative natural language processing classification tasks, including class-imbalanced and distribution-shifted settings.
翻译:我们提出一种新的方法,通过基于 KNN 的近似点预测可靠性的强烈信号为变换网络建造预测装置,从而能够对高维特征空间进行数据驱动的分割,并建立一个新的用于校准的感性Venn-ADMIT 预测器,比最近为深网络提出适应性和局部性符合性评分功能的工作更接近于有条件覆盖。我们分析了几种有代表性的自然语言处理分类任务,包括分类平衡和分配变化设置的覆盖面。