It is known that the solution of a conservative steady-state two-sided fractional diffusion problem can exhibit singularities near the boundaries. As consequence of this, and due to the conservative nature of the problem, we adopt a finite volume elements discretization approach over a generic non-uniform mesh. We focus on grids mapped by a smooth function which consist in a combination of a graded mesh near the singularity and a uniform mesh where the solution is smooth. Such a choice gives rise to Toeplitz-like discretization matrices and thus allows a low computational cost of the matrix-vector product and a detailed spectral analysis. The obtained spectral information is used to develop an ad-hoc parameter free multigrid preconditioner for GMRES, which is numerically shown to yield good convergence results in presence of graded meshes mapped by power functions that accumulate points near the singularity. The approximation order of the considered graded meshes is numerically compared with the one of a certain composite mesh given in literature that still leads to Toeplitz-like linear systems and is then still well-suited for our multigrid method. Several numerical tests confirm that power graded meshes result in lower approximation errors than composite ones and that our solver has a wide range of applicability.


翻译:众所周知,保守稳定状态的双向分块扩散问题的解决方案可以在边界附近表现出奇特性。 因此,由于这一问题的保守性质,我们对通用的非统一网状网状采用数量有限的量元素分解法。 我们侧重于以光滑函数绘制的网格,该网格由接近奇点的分级网格和统一的网格组合组成,而该网格是解决办法平滑的。这种选择产生类似于托普利茨的离散矩阵,从而可以降低矩阵-矢量产品和详细光谱分析的计算成本。获得的光谱信息被用来为GMRES开发一个不设多网状参数的多网格预设程序,在数字上显示,当有根据聚集点的功率函数绘制的分级网格能够产生良好的趋同效果。 与文献中给出的某种复合网格混合网格的组合网格组合组合矩阵相比,它仍然导致托普利茨相似的线性系统,然后仍然非常适合我们的多格网状系统。 几个数字级测试显示,比我们多格模型的模型的精确度范围。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月24日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员