In this paper we study the convergence rate of a finite volume approximation of the compressible Navier--Stokes--Fourier system. To this end we first show the local existence of a highly regular unique strong solution and analyse its global extension in time as far as the density and temperature remain bounded. We make a physically reasonable assumption that the numerical density and temperature are uniformly bounded from above and below. The relative energy provides us an elegant way to derive a priori error estimates between finite volume solutions and the strong solution.
翻译:在本文中,我们研究了压缩的纳维埃-斯托克斯-四重力系统数量有限近似值的趋同率。为此目的,我们首先显示当地存在一个非常经常的独特强效解决方案,并分析其全球延伸,直至其密度和温度仍受约束。我们实际合理地假定数字密度和温度从上到下都一致结合。相对能量为我们提供了一种优雅的方法,可以得出数量有限解决方案与强力解决方案之间的先验误差估计。