This paper investigates, a new class of fractional order Runge-Kutta (FORK) methods for numerical approximation to the solution of fractional differential equations (FDEs). By using the Caputo generalized Taylor formula and the total differential for Caputo fractional derivative, we construct explicit and implicit FORK methods, as the well-known Runge-Kutta schemes for ordinary differential equations. In the proposed method, due to the dependence of fractional derivatives to a fixed base point $t_0,$ we had to modify the right-hand side of the given equation in all steps of the FORK methods. Some coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the proposed method is also discussed. Numerical experiments clarify the effectiveness and robustness of the method.
翻译:本文调查了一类新的分序龙格-库塔(FORK)方法,用于解决分差方程(FDEs)的数值近似值。 通过使用卡普托通用泰勒公式和卡普托分数衍生物总差,我们构建了明确和隐含的FORK方法,作为众所周知的龙格-库塔普通差分方程计划。在拟议方法中,由于分数衍生物依赖固定基点$t_0,我们不得不在FORK方法的所有步骤中修改给定方程的右侧面。提出了明确和隐含FORK方案的一些系数。还讨论了对拟议方法的趋同分析。数字实验澄清了方法的有效性和稳健性。