The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip's specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric.


翻译:电子供应链的全球化需要有效的方法来阻止反向工程和IP盗窃。逻辑锁定是一个很有希望的解决方案,但有许多开放的问题。 首先,即使应用在更高的抽象层次上,锁定也可能在不改进安全度标的情况下导致大量间接费用。 其次,优化安全度量标准取决于应用,设计者必须评估和比较替代解决方案。我们提出了一个元框架,以便在IP核心的高级合成(HLS)中优化使用行为锁定。我们的方法是按芯片的规格(HLS之前)操作的,它与所有HLS工具兼容,补充工业EDA流。我们的元框架支持探索设计空间和选择要自动锁定的点的不同战略。我们评估了我们优化差分酶的方法,取得了比随机或表面锁定更好的结果:1 我们总是确定一个有效的解决方案,优化安全度指标,而上层和随机锁定可以产生不可行的解决方案; 2)我们尽量减少用于锁定超过90%的芯片工具(HLS之前),补充工业的EDA流。我们的元框架支持不同战略,以探索设计空间和选择要自动锁定的点。 我们评估了我们如何优化的精度,取得更好的结果,比随机或表面锁的硬件要更好使用。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员