In the logic synthesis stage, structure transformations in the synthesis tool need to be combined into optimization sequences and act on the circuit to meet the specified circuit area and delay. However, logic synthesis optimization sequences are time-consuming to run, and predicting the quality of the results (QoR) against the synthesis optimization sequence for a circuit can help engineers find a better optimization sequence faster. In this work, we propose a deep learning method to predict the QoR of unseen circuit-optimization sequences pairs. Specifically, the structure transformations are translated into vectors by embedding methods and advanced natural language processing (NLP) technology (Transformer) is used to extract the features of the optimization sequences. In addition, to enable the prediction process of the model to be generalized from circuit to circuit, the graph representation of the circuit is represented as an adjacency matrix and a feature matrix. Graph neural networks(GNN) are used to extract the structural features of the circuits. For this problem, the Transformer and three typical GNNs are used. Furthermore, the Transformer and GNNs are adopted as a joint learning policy for the QoR prediction of the unseen circuit-optimization sequences. The methods resulting from the combination of Transformer and GNNs are benchmarked. The experimental results show that the joint learning of Transformer and GraphSage gives the best results. The Mean Absolute Error (MAE) of the predicted result is 0.412.
翻译:在逻辑合成阶段,合成工具的结构转换需要结合到优化序列中,并在电路上采取行动,以满足指定的电路区和延迟。然而,逻辑合成优化序列运行耗费时间,而逻辑合成优化序列比电路合成优化序列预测结果质量(QoR),有助于工程师找到更好的优化序列。在这项工作中,我们提出一种深学习方法,以预测未知电路-优化序列对配对的QOR,合成工具的结构转换需要结合到优化序列中,在电路中,为了满足指定的电路区和延迟,需要将结构转换程序整合到电路中,以满足指定的电路区和时间延迟。然而,逻辑合成优化序列程序需要花费时间运行;此外,为使模型的预测进程从电路到电路的合成优化序列预测质量预测(QRR),电路的图形表示以相近12矩阵矩阵矩阵和特征矩阵。为此,采用了结构转换器和三种典型的GNNNNS。此外,还采用变器和GNNS(G)变和GNNS的快速处理技术,作为G-LIM、GLLLIM、G的更轨、更轨、更轨、更轨、更轨、更轨、更轨、更替的更轨、更轨、更轨、更替的流的更替的更轨、更序结果结果结果结果,以及GNS结果结果,以及GNIM的学习结果结果,以及GUR的学习结果,以及GUR的学习了GR、GLF的统、GM的统、GLIM、GM的统、GLU的统、GNNIS结果,以及GLU的统、GLU的统、G的结果、G的结果、G的结果,以及G的结果,以及G的统、G的统、G的结果,以及G的统、G的统、GM的统、G的统、GQ的统、G的统、G的统、GNL的统、GMLU的统、GM的统、G的统、G的统、G的、GL的统、GL的、G的、G的、G的、G的、G的、GF的、G的、G的统、GF的、GM的、G的结果,以及G的结果,以及G