We show that normalising flows become pathological when used to model targets whose supports have complicated topologies. In this scenario, we prove that a flow must become arbitrarily numerically noninvertible in order to approximate the target closely. This result has implications for all flow-based models, and especially Residual Flows (ResFlows), which explicitly control the Lipschitz constant of the bijection used. To address this, we propose Continuously Indexed Flows (CIFs), which replace the single bijection used by normalising flows with a continuously indexed family of bijections, and which can intuitively "clean up" mass that would otherwise be misplaced by a single bijection. We show theoretically that CIFs are not subject to the same topological limitations as normalising flows, and obtain better empirical performance on a variety of models and benchmarks.


翻译:我们发现,当用于模拟支持有复杂地形的模型目标时,正常化的流量就会成为病理。 在这种假设中,我们证明流动必须是任意的,数字上是不可忽略的,以便接近目标。 这一结果对所有流动模型都有影响,特别是残留流(ResFlows),这些模型明确控制了所使用的利普施茨曲线常数。 为了解决这个问题,我们提议了连续指数化流程(CIFs),用一个持续指数化的双点组合来取代正常化流程所使用的单项单项单项,它可以直观地“清理”质量,否则会被单项单项截线错置。 我们从理论上表明,CIFs没有像正常化流程那样受到相同的顶点限制,而是在各种模型和基准上获得更好的经验表现。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
2018: AI in All的元年
专知
3+阅读 · 2018年12月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Value Alignment Verification
Arxiv
0+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
2018: AI in All的元年
专知
3+阅读 · 2018年12月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员