In this paper, we propose a numerical method to solve the mass-conserved Ohta-Kawasaki equation with finite element discretization. An unconditional stable convex split-ting scheme is applied to time approximation. The Newton method and its variant are used to address the implicitly nonlinear term. We rigorously analyze the convergence of the Newton iteration methods. Theoretical results demonstrate that two Newton iteration methods have the same convergence rate, and the Newton method has a smaller convergent factor than the variant one. To reduce the condition number of discretized linear system, we design two efficient block preconditioners and analyze their spectral distribution. Finally, we offer numerical examples to support the theoretical analysis and indicate the efficiency of the proposed numerical methods for the mass-conserved Ohta-Kawasaki equation.
翻译:在本文中, 我们提出一个数字方法, 用有限元素分解来解析质量维护的Ohta- Kawasaki 方程式。 无条件稳定的 convex 分解方案适用于时间近似 。 牛顿法及其变量用于解决隐含的非线性术语 。 我们严格分析牛顿迭代法的趋同性 。 理论结果显示, 两个牛顿迭代法的趋同率相同, 牛顿法比变异法的趋同系数较小 。 为了减少离散线性线性系统的条件数, 我们设计了两个高效的区块预设器, 并分析其光谱分布 。 最后, 我们提供数字例子来支持理论分析, 并表明用于质量维护的 Ohta- Kawasaki 方程式的拟议数字方法的效率 。