Stochastic simulations such as large-scale, spatiotemporal, age-structured epidemic models are computationally expensive at fine-grained resolution. We propose Interactive Neural Process (INP), an interactive framework to continuously learn a deep learning surrogate model and accelerate simulation. Our framework is based on the novel integration of Bayesian active learning, stochastic simulation and deep sequence modeling. In particular, we develop a novel spatiotemporal neural process model to mimic the underlying process dynamics. Our model automatically infers the latent process which describes the intrinsic uncertainty of the simulator. This also gives rise to a new acquisition function that can quantify the uncertainty of deep learning predictions. We design Bayesian active learning algorithms to iteratively query the simulator, gather more data, and continuously improve the model. We perform theoretical analysis and demonstrate that our approach reduces sample complexity compared with random sampling in high dimension. Empirically, we demonstrate our framework can faithfully imitate the behavior of a complex infectious disease simulator with a small number of examples, enabling rapid simulation and scenario exploration.
翻译:大规模、 时空、 年龄结构的流行病模型等沙眼模拟模型在精密分辨率下计算成本昂贵。 我们提出互动神经过程(InP),这是一个互动框架,用于不断学习深层学习代孕模型和加速模拟。 我们的框架基于贝叶西亚积极学习、随机模拟和深序列模型的新颖整合。 特别是, 我们开发了一个新颖的时空神经过程模型, 以模拟原始过程动态。 我们的模型自动推断出描述模拟器内在不确定性的潜在过程。 这还产生了一个新的获取功能, 能够量化深层学习预测的不确定性。 我们设计了巴伊西亚积极学习算法, 以反复查询模拟器, 收集更多的数据, 并不断改进模型。 我们进行理论分析, 并证明我们的方法会降低样本复杂性, 与高度随机采样相比。 活性, 我们展示了我们的框架可以忠实地模仿复杂传染病模拟器的行为, 并有少量的例子, 能够进行快速的模拟和情景探索 。