We introduce the categories of quasi-measurable spaces, which are slight generalizations of the category of quasi-Borel spaces, where we now allow for general sample spaces and less restrictive random variables, spaces and maps. We show that each category of quasi-measurable spaces is bi-complete and cartesian closed. We also introduce several different strong probability monads. Together these constructions provide convenient categories for higher probability theory that also support semantics of higher-order probabilistic programming languages in the same way as the category of quasi-Borel spaces does. An important special case is the category of quasi-universal spaces, where the sample space is the set of the real numbers together with the sigma-algebra of all universally measurable subsets. The induced sigma-algebras on those quasi-universal spaces then have explicit descriptions in terms of intersections of Lebesgue-complete sigma-algebras. A central role is then played by countably separated and universal quasi-universal spaces, which replace the role of standard Borel spaces. We prove in this setting a Fubini theorem, a disintegration theorem for Markov kernels, a Kolmogorov extension theorem and a conditional de Finetti theorem. We also translate our findings into properties of the corresponding Markov category of Markov kernels between universal quasi-universal spaces. Furthermore, we formalize causal Bayesian networks in terms of quasi-universal spaces and prove a global Markov property. For this we translate the notion of transitional conditional independence into this setting and study its (asymmetric) separoid rules. Altogether we are now able to reason about conditional independence relations between variables and causal mechanisms on equal footing. Finally, we also highlight how one can use exponential objects and random functions for counterfactual reasoning.
翻译:我们引入了准计量空间的类别。 这些类别与准布尔空间的类别相同, 轻微地概括了准二次空间的类别。 我们现在允许一般的样本空间, 以及限制较少的随机变量、 空间和地图。 我们显示, 每种准计量空间都是双完全的, 并关闭了碳酸盐类。 我们还引入了几种不同的强度概率月度。 这些构造为更高概率理论提供了方便的类别, 这些理论也支持了更高阶级的概率性能编程语言的语义, 与准布尔空间的类别一样。 一个重要的特例是准通用空间的类别, 即准普遍空间, 样本空间是真实数字空间的集合, 以及所有可普遍测量的子项的光度- 。 引出这些准普遍性空间的igma- 方位数, 然后以雷贝格- 完全的光度- 方格- 方格- 方格- 方格- 的交叉点的交叉点的交叉点。 然后, 一个核心作用被可量化的和通用的准通用空间, 也能够取代标准的博尔空间的作用。 我们的正位空间。 我们在此将一个直基的直基的直系的直系的直系的直系的直系的直系的直系的直系的直系解释和直系的直系的直系的直系的直系的直系解释。