Consider any locally checkable labeling problem $\Pi$ in rooted regular trees: there is a finite set of labels $\Sigma$, and for each label $x \in \Sigma$ we specify what are permitted label combinations of the children for an internal node of label $x$ (the leaf nodes are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing, including vertex coloring, edge coloring, and maximal independent set. We show that the distributed computational complexity of any such problem $\Pi$ falls in one of the following classes: it is $O(1)$, $\Theta(\log^* n)$, $\Theta(\log n)$, or $n^{\Theta(1)}$ rounds in trees with $n$ nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four standard models of distributed graph algorithms: deterministic $\mathsf{LOCAL}$, randomized $\mathsf{LOCAL}$, deterministic $\mathsf{CONGEST}$, and randomized $\mathsf{CONGEST}$ model. In particular, we show that randomness does not help in this setting, and the complexity class $\Theta(\log \log n)$ does not exist (while it does exist in the broader setting of general trees). We also show how to systematically determine the complexity class of any such problem $\Pi$, i.e., whether $\Pi$ takes $O(1)$, $\Theta(\log^* n)$, $\Theta(\log n)$, or $n^{\Theta(1)}$ rounds. While the algorithm may take exponential time in the size of the description of $\Pi$, it is nevertheless practical: we provide a freely available implementation of the classifier algorithm, and it is fast enough to classify many problems of interest.
翻译:考虑任何本地检查标签问题 $\ pi 在扎根的常规树中 : 有一套有限的标签 $\ sigma$, 对于每个标签 $x\ in\ sgma$, 我们指定了标签内部节点$x$( 叶节点不受限制) 允许的孩子们标签组合 。 这种形式主义足以反映分布式计算中研究的许多经典问题, 包括顶端颜色、 边缘颜色和最大独立的设置 。 我们显示, 任何这类问题的分布式计算复杂性 $\ pi$ 的分布式复杂度在以下类别之一 : $( ) 美元 、 $( log_ n) 美元、 $( log_ ) 美元、 美元( 美元) 或 美元( 美元) 。 我们显示, 在分布式的图形算法中, 任何问题的复杂性都是一样的 : 确定 $( 美元) = = = = = 美元 ( = = = 美元) 类中的任意 。