This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex, and closed model set containing the object. It complements the article "Statistical Estimation and Optimal Recovery" published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho's proof.
翻译:本说明探讨了对通过随机噪音腐蚀的线性观测获得的物体的线性功能进行最佳估计的问题,在这种观测中,最佳性能是指与含有该物体的对称、共形和封闭型模型集挂钩的最坏情况设置。它补充了1994年《统计年鉴》中发表的文章“统计估计和最佳恢复”。多诺霍(除其他事情外)指出,对于高萨噪音而言,线性地图提供了接近最佳的估计计划,相对于统计估计中相关的性能衡量标准而言。在这里,我们主张采用不同的性能衡量标准,在最佳恢复中可能更为相关。我们表明,相对于这一新衡量标准而言,线性地图仍然提供接近最佳的估计计划,即使噪音仅仅是日志相近。我们的论点与高斯案例所特有的确定性噪音状况和绕行特性相关联,为多诺霍证据的某些部分提供了替代方法。