Previous works showed that Deep-RL can be applied to perform mapless navigation, including the medium transition of Hybrid Unmanned Aerial Underwater Vehicles (HUAUVs). This paper presents new approaches based on the state-of-the-art actor-critic algorithms to address the navigation and medium transition problems for a HUAUV. We show that a double critic Deep-RL with Recurrent Neural Networks improves the navigation performance of HUAUVs using solely range data and relative localization. Our Deep-RL approaches achieved better navigation and transitioning capabilities with a solid generalization of learning through distinct simulated scenarios, outperforming previous approaches.
翻译:先前的作品表明,Diep-RL可用于进行无地图导航,包括混合无人驾驶的空中水下车辆的中转,本文件介绍了基于最先进的行为者-批评算法的新方法,以解决HUAUV的导航和中转问题。我们显示,与经常性神经网络的双重批评者Deep-RL仅使用射程数据和相对本地化,可以改进HUAUV的导航性能。我们的深程方法实现了更好的导航和过渡能力,通过不同的模拟情景,以优于以往的方法,对学习进行了坚实的概括。