We analyze constrained and unconstrained minimization problems on patches of tetrahedra sharing a common vertex with discontinuous piecewise polynomial data of degree p. We show that the discrete minimizers in the spaces of piecewise polynomials of degree p conforming in the H1, H(curl), or H(div) spaces are as good as the minimizers in these entire (infinite-dimensional) Sobolev spaces, up to a constant that is independent of p. These results are useful in the analysis and design of finite element methods, namely for devising stable local commuting projectors and establishing local-best/global-best equivalences in a priori analysis and in the context of a posteriori error estimation. Unconstrained minimization in H1 and constrained minimization in H(div) have been previously treated in the literature. Along with improvement of the results in the H1 and H(div) cases, our key contribution is the treatment of the H(curl) framework. This enables us to cover the whole De Rham diagram in three space dimensions in a single setting.
翻译:我们分析了在四面体间共享一个共同的顶点与不连续的片段多度数据共享的受限制和不受限制的最小化问题,p。我们表明,在符合H1、H(curl)或H(div)的片段多度空间空间,与符合H1、H(curl)或H(div)的片段多度空间空间的离散最小化器一样,这些离散的最小化器与整个(无限)索博列夫空间的最小化器相同,直至一个独立于p的常数。这些结果有助于分析和设计有限元素方法,即设计稳定的本地通航投影仪,并在前言分析中和在事后误差估计中建立地方最佳/全球最佳等值。H1和H(div)限制最小化的离子空间空间空间空间空间空间空间空间空间的离散最小化器与这些(无限制最小化器一样好。随着H1和H(curl)案件结果的改进,我们的关键贡献是H(curl)框架的处理。这些结果有助于分析和设计有限元素方法,即设计稳定的本地通制成当地通/全球最佳/全球最佳/全球最佳投射图,使我们能够在一个空间的三个空间层中覆盖整个。