Recent work on Path-Dependent Partial Differential Equations (PPDEs) has shown that PPDE solutions can be approximated by a probabilistic representation, implemented in the literature by the estimation of conditional expectations using regression. However, a limitation of this approach is to require the selection of a basis in a function space. In this paper, we overcome this limitation by the use of deep learning methods, and we show that this setting allows for the derivation of error bounds on the approximation of conditional expectations. Numerical examples based on a two-person zero-sum game, as well as on Asian and barrier option pricing, are presented. In comparison with other deep learning approaches, our algorithm appears to be more accurate, especially in large dimensions.
翻译:最近关于 " 路径依赖的局部差别 " (PPDEs)的工作表明,PPDE(PPDEs)解决方案可以通过概率代表法加以比较,在文献中采用以回归方式估计有条件的预期值来实施。然而,这一方法的局限性是要求在一个功能空间中选择一个基础。在本文中,我们通过使用深层学习方法克服了这一局限性,我们表明,这一设置允许根据有条件期望的近似值得出错误界限。提供了基于两人零和游戏以及亚洲和障碍选项定价的数字实例。与其他深层学习方法相比,我们的算法似乎更准确,特别是在大方面。