This paper introduces a new synthesis-based defense algorithm for counteracting with a varieties of adversarial attacks developed for challenging the performance of the cutting-edge speech-to-text transcription systems. Our algorithm implements a Sobolev-based GAN and proposes a novel regularizer for effectively controlling over the functionality of the entire generative model, particularly the discriminator network during training. Our achieved results upon carrying out numerous experiments on the victim DeepSpeech, Kaldi, and Lingvo speech transcription systems corroborate the remarkable performance of our defense approach against a comprehensive range of targeted and non-targeted adversarial attacks.
翻译:本文介绍了一种新的基于合成的防御算法,用以用各种对抗性攻击来对抗为挑战尖端语音对文本抄录系统的表现而开发的多种对抗性攻击。我们的算法采用了基于Sobolev的GAN, 并提议了一种新型的正规化工具,以有效控制整个基因模型的功能,特别是培训期间的歧视者网络。我们在对受害者DeepSpeech、Kaldi和Lingvo的语音抄录系统进行大量实验后取得的成果证实了我们针对一系列目标和非目标的对抗性攻击所采取的防御方法的出色表现。