This work presents a non-parametric spatio-temporal model for mapping human activity by mobile autonomous robots in a long-term context. Based on Variational Gaussian Process Regression, the model incorporates prior information of spatial and temporal-periodic dependencies to create a continuous representation of human occurrences. The inhomogeneous data distribution resulting from movements of the robot is included in the model via a heteroscedastic likelihood function and can be accounted for as predictive uncertainty. Using a sparse formulation, data sets over multiple weeks and several hundred square meters can be used for model creation. The experimental evaluation, based on multi-week data sets, demonstrates that the proposed approach outperforms the state of the art both in terms of predictive quality and subsequent path planning.
翻译:这项工作提供了一个非参数的时空空间模型,用于用移动自主机器人在长期范围内绘制人类活动图。根据变化式高斯进程回归,该模型纳入了先前的空间和时间依赖性信息,以建立人类事件的连续代表性。机器人移动产生的不相容数据分布通过超异概率功能被纳入模型,并可以算作预测性不确定性。使用稀疏的配方,多星期和几百平方米的数据集可用于模型创建。基于多星期数据集的实验评估表明,拟议的方法在预测质量和随后路径规划方面都超过了最新技术。