Outlying observations can be challenging to handle and adversely affect subsequent analyses, particularly, in complex high-dimensional datasets. Although outliers are not always undesired anomalies in the data and may possess valuable insights, only methods that are robust to outliers are able to accurately identify them and resist their influence. In this paper, we propose a method that generates an ensemble of sparse and diverse predictive models that are resistant to outliers. We show that the ensembles generally outperform single-model sparse and robust methods in high-dimensional prediction tasks. Cross-validation is used to tune model parameters to control levels of sparsity, diversity and resistance to outliers. We establish the finitesample breakdown point of the ensembles and the models that comprise them, and we develop a tailored computing algorithm to learn the ensembles by leveraging recent developments in L0 optimization. Our extensive numerical experiments on synthetic and artificially contaminated real datasets from bioinformatics and cheminformatics demonstrate the competitive advantage of our method over state-of-the-art single-model methods.
翻译:暂无翻译