Existing methods for evaluating the factuality of large language model (LLM) responses treat all claims as equally important. This results in misleading evaluations when vital information is missing or incorrect as it receives the same weight as peripheral details, raising the question: how can we reliably detect such differences when there are errors in key information? Current approaches that measure factuality tend to be insensitive to omitted or false key information. To investigate this lack of sensitivity, we construct VITALERRORS, a benchmark of 6,733 queries with minimally altered LLM responses designed to omit or falsify key information. Using this dataset, we demonstrate the insensitivities of existing evaluation metrics to key information errors. To address this gap, we introduce VITAL, a set of metrics that provide greater sensitivity in measuring the factuality of responses by incorporating the relevance and importance of claims with respect to the query. Our analysis demonstrates that VITAL metrics more reliably detect errors in key information than previous methods. Our dataset, metrics, and analysis provide a foundation for more accurate and robust assessment of LLM factuality.
翻译:暂无翻译