In this paper, we investigate a nonlocal traffic flow model based on a scalar conservation law, where a stochastic velocity function is assumed. In addition to the modeling, theoretical properties of the stochastic nonlocal model are provided, also addressing the question of well-posedness. A detailed numerical analysis offers insights how the stochasticity affects the evolution of densities. Finally, numerical examples illustrate the mean behavior of solutions and the influence of parameters for a large number of realizations.
翻译:暂无翻译