We develop and analyze a principled approach to kernel ridge regression under covariate shift. The goal is to learn a regression function with small mean squared error over a target distribution, based on unlabeled data from there and labeled data that may have a different feature distribution. We propose to split the labeled data into two subsets and conduct kernel ridge regression on them separately to obtain a collection of candidate models and an imputation model. We use the latter to fill the missing labels and then select the best candidate model accordingly. Our non-asymptotic excess risk bounds show that in quite general scenarios, our estimator adapts to the structure of the target distribution as well as the covariate shift. It achieves the minimax optimal error rate up to a logarithmic factor. The use of pseudo-labels in model selection does not have major negative impacts.
翻译:我们开发并分析一种原则性的方法, 用于在共变式变换下进行内核脊回归。 目标是根据未贴标签的数据和标签数据, 以不同特性分布的不同特性分布为基础, 学习一个在目标分布上存在小平均正方差的回归函数。 我们提议将标签数据分成两个子集, 并分别进行内核脊回归, 以获得候选模型和估算模型的集合。 我们用后者填充缺失的标签, 然后相应选择最佳的候选模型。 我们的非防腐性超重风险边框显示, 在非常一般的场景中, 我们的估算器会适应目标分布结构和共变换变化。 它会达到最小最大最佳误差率, 直至一个对数系数。 在模型选择中使用伪标签不会产生重大的负面影响 。