A debt swap is an elementary edge swap in a directed, weighted graph, where two edges with the same weight swap their targets. Debt swaps are a natural and appealing operation in financial networks, in which nodes are banks and edges represent debt contracts. They can improve the clearing payments and the stability of these networks. However, their algorithmic properties are not well-understood. We analyze the computational complexity of debt swapping in networks with ranking-based clearing. Our main interest lies in semi-positive swaps, in which no creditor strictly suffers and at least one strictly profits. These swaps lead to a Pareto-improvement in the entire network. We consider network optimization via sequences of $v$-improving debt swaps from which a given bank $v$ strictly profits. We show that every sequence of semi-positive $v$-improving swaps has polynomial length. In contrast, for arbitrary $v$-improving swaps, the problem of reaching a network configuration that allows no further swaps is PLS-complete. We identify cases in which short sequences of semi-positive swaps exist even without the $v$-improving property. In addition, we study reachability problems, i.e., deciding if a sequence of swaps exists between given initial and final networks. We identify a polynomial-time algorithm for arbitrary swaps, show NP-hardness for semi-positive swaps and even PSPACE-completeness for $v$-improving swaps or swaps that only maintain a lower bound on the assets of a given bank $v$. A variety of our results can be extended to arbitrary monotone clearing.


翻译:债务互换是一种基本边缘交换, 指向、 加权图中, 我们的主要利益在于半积极的互换, 债权人不会受到严格的打击, 至少有一个严格的利润。 债务互换导致整个网络的Pareto改进。 我们考虑通过美元- 改善债务互换的顺序来优化网络的网络优化网络, 其中给定的银行将获得1美元- 改善互换的稳定性。 我们显示每一系列半正值的美元- 改善的互换都有超值长度。 相反, 我们分析的是, 任意的 美元- 改善的互换, 我们的主要利益在于半积极的互换, 没有任何债权人会受到严格的打击, 至少是一个严格的利润互换。 这些互换导致整个网络的简化。 我们考虑通过美元- 改善债务互换的顺序来优化网络的网络优化网络, 而一个半正值- 我们的货币- 变现的货币- 变现的货币- 期的货币交易结果, 我们的货币互换周期将持续进行。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
12+阅读 · 2020年12月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员