Despite the recent success of Bayesian optimization (BO) in a variety of applications where sample efficiency is imperative, its performance may be seriously compromised in settings characterized by high-dimensional parameter spaces. A solution to preserve the sample efficiency of BO in such problems is to introduce domain knowledge into its formulation. In this paper, we propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings and optimize the acquisition function of BO in low-dimensional latent spaces. Our approach, built on Riemannian manifolds theory, features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space. We test our approach in several benchmark artificial landscapes and report that it not only outperforms other high-dimensional BO approaches in several settings, but consistently optimizes the objective functions, as opposed to geometry-unaware BO methods.


翻译:尽管最近巴伊西亚优化(BO)在各种应用中取得了成功,样本效率是绝对必要的,但其性能在以高维参数空间为特征的环境中可能严重受损。保护BO在这类问题上的样本效率的一个解决办法是将域知识引入其设计中。在本文件中,我们提议利用非欧裔搜索空间的几何学,这些空间往往出现在多个领域,学习结构保护绘图,优化BO在低维潜层空间的获取功能。我们基于里曼多方理论的方法,其特征是几何学成形的高斯进程,这些进程在潜在空间共同学习嵌套式嵌套和表示目标功能。我们在若干人造地貌基准中测试了我们的方法,并报告说它不仅在许多环境中优于其他高维的BO方法,而且一贯优化目标功能,而不是几何式的UO方法。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
52+阅读 · 2020年9月7日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
52+阅读 · 2020年9月7日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员