This article introduces HODLR3D, a class of hierarchical matrices arising out of $N$-body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the $N$-body problems in three dimensions are numerically low-rank. For the Laplace kernel in $3$D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in $3$D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for $N$-body problems with large system sizes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员