A collaborative network is a social network that is comprised of experts who cooperate with each other to fulfill a special goal. Analyzing this network yields meaningful information about the expertise of these experts and their subject areas. To perform the analysis, graph embedding techniques have emerged as an effective and promising tool. Graph embedding attempts to represent graph nodes as low-dimensional vectors. In this paper, we propose a graph embedding method, called ExEm, that uses dominating-set theory and deep learning approaches to capture node representations. ExEm finds dominating nodes of the collaborative network and constructs intelligent random walks that comprise of at least two dominating nodes. One dominating node should appear at the beginning of each path sampled to characterize the local neighborhoods. Moreover, the second dominating node reflects the global structure information. To learn the node embeddings, ExEm exploits three embedding methods including Word2vec, fastText and the concatenation of these two. The final result is the low-dimensional vectors of experts, called expert embeddings. The extracted expert embeddings can be applied to many applications. In order to extend these embeddings into the expert recommendation system, we introduce a novel strategy that uses expert vectors to calculate experts' scores and recommend experts. At the end, we conduct extensive experiments to validate the effectiveness of ExEm through assessing its performance over the multi-label classification, link prediction, and recommendation tasks on common datasets and our collected data formed by crawling the vast author Scopus profiles. The experiments show that ExEm outperforms the baselines especially in dense networks.


翻译:合作网络是一个社会网络, 由相互合作的专家组成, 以实现一个特殊的目标。 分析这个网络可以产生关于这些专家及其主题领域的有意义的信息。 为了进行分析, 图形嵌入技术已经成为一个有效和有希望的工具。 图形嵌入尝试将图形节点代表为低维矢量。 在本文中, 我们提出一个图形嵌入方法, 名为 ExEm, 使用占位定理论和深层学习方法来捕捉节点代表。 ExEm 找到合作网络的顶点, 并构建智能随机行走, 由至少两个占位节点组成的智能随机行走。 为了进行分析, 将图形嵌入的节点显示为每个路径的起始点, 以描述本地邻居。 此外, 第二个占位的节点反映了全球结构信息。 要学习点嵌入方法, ExE 利用三种嵌入方法, 包括Word2vec、 快图和这三种嵌入方法。 最后结果是专家的低位矢量矢量矢量矢量矢量矢量流, 叫做专家嵌入专家 。 将一个专家嵌入的直径嵌入轨道 系统, 用来将这些直径 用于直径专家 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员