We consider the problem of signaling rate and performance for an efficient control and management of RIS reconfigurations and handover in next generation mobile networks. To this end, we first analytically determine the rates of RIS reconfigurations and handover using a stochastic geometry network model. We derive closed-form expressions of these rates while taking into account static obstacles (both known and unknown), self-blockage, RIS location density, and variations in the angle and direction of user mobility. Based on the rates derived, we analyze the signaling rates of a sample novel signaling protocol, which we propose as an extension of an handover signaling protocol standard in mobile networks. The results quantify the impact of known and unknown obstacles on the RIS and handover reconfiguration rate as function of device density and mobility. We use the proposed analysis to evaluate the signaling overhead due to RIS reconfigurations, as well as to dimension the related RIS control plane server capacity in the network management system. To the best of our knowledge, this is the first analytical model to derive the closed form expressions of RIS reconfiguration rates, along with handover rates, and relate its statistical properties to the signaling rate and performance in next generation mobile networks.
翻译:暂无翻译