Few-Shot Learning (FSL) is a challenging task, i.e., how to recognize novel classes with few examples? Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then predict novel classes via a nearest neighbor classifier with mean-based prototypes. Nevertheless, due to the data scarcity, the mean-based prototypes are usually biased. In this paper, we diminish the bias by regarding it as a prototype optimization problem. Although the existing meta-optimizers can also be applied for the optimization, they all overlook a crucial gradient bias issue, i.e., the mean-based gradient estimation is also biased on scarce data. Consequently, we regard the gradient itself as meta-knowledge and then propose a novel prototype optimization-based meta-learning framework, called MetaNODE. Specifically, we first regard the mean-based prototypes as initial prototypes, and then model the process of prototype optimization as continuous-time dynamics specified by a Neural Ordinary Differential Equation (Neural ODE). A gradient flow inference network is carefully designed to learn to estimate the continuous gradients for prototype dynamics. Finally, the optimal prototypes can be obtained by solving the Neural ODE using the Runge-Kutta method. Extensive experiments demonstrate that our proposed method obtains superior performance over the previous state-of-the-art methods. Our code will be publicly available upon acceptance.


翻译:低热学习( FSL) 是一项艰巨的任务, 即如何以几个例子来识别新类? 培训前方法通过先训练一个地物提取器来有效解决问题, 然后通过一个离近的邻居分类器, 以平均原型来预测新类。 然而, 由于数据稀缺, 以平均值为基础的原型通常有偏差。 在本文中, 我们通过将原型视为原型优化问题来减少偏见。 尽管现有的元优化器也可以应用到优化中, 但它们都忽略了关键的梯度偏差问题, 即平均梯度估计也偏向于稀缺的数据。 因此, 我们把梯度本身视为元知识, 然后提出一个新的基于优化的原型元学习框架, 称为MetaNODE。 具体地说, 我们首先将原型原型原型原型视为初始原型原型, 然后将原型优化过程作为由神经质普通差异化( Neuroral Squal Equal Equalation) 指定的连续时间动态。 梯流网络经过仔细设计, 以便学习如何利用我们提出的前期的高级实验方法, 展示我们的最佳原型模型, 将获得最佳原型模型。

1
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
4+阅读 · 2019年11月25日
Arxiv
9+阅读 · 2019年4月19日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
4+阅读 · 2019年11月25日
Arxiv
9+阅读 · 2019年4月19日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Top
微信扫码咨询专知VIP会员