We investigate various data-driven methods to enhance projection-based model reduction techniques with the aim of capturing bifurcating solutions. To show the effectiveness of the data-driven enhancements, we focus on the incompressible Navier-Stokes equations and different types of bifurcations. To recover solutions past a Hopf bifurcation, we propose an approach that combines proper orthogonal decomposition with Hankel dynamic mode decomposition. To approximate solutions close to a pitchfork bifurcation, we combine localized reduced models with artificial neural networks. Several numerical examples are shown to demonstrate the feasibility of the presented approaches.
翻译:我们调查了各种数据驱动方法,以强化基于预测的模型减少技术,目的是捕捉双向解决方案。为了显示数据驱动增强的效果,我们侧重于不可压缩的导航-斯托克方程式和不同类型的双向方程式。为了在Hopf的分离中恢复解决方案,我们建议了一种将正正正正正正正正的正向分解与Hankel动态模式分解结合起来的方法。为了接近于石叉分解的近似解决方案,我们把局部缩水模型与人工神经网络结合起来。我们展示了几个数字例子,以证明所提出的方法的可行性。